test-ieee.cc 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422
  1. // Copyright 2006-2008 the V8 project authors. All rights reserved.
  2. #include <stdlib.h>
  3. #include "cctest.h"
  4. #include "diy-fp.h"
  5. #include "ieee.h"
  6. #include "utils.h"
  7. #include "../../src/ieee.h"
  8. using namespace double_conversion;
  9. TEST(Uint64Conversions) {
  10. // Start by checking the byte-order.
  11. uint64_t ordered = UINT64_2PART_C(0x01234567, 89ABCDEF);
  12. CHECK_EQ(3512700564088504e-318, Double(ordered).value());
  13. uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
  14. CHECK_EQ(5e-324, Double(min_double64).value());
  15. uint64_t max_double64 = UINT64_2PART_C(0x7fefffff, ffffffff);
  16. CHECK_EQ(1.7976931348623157e308, Double(max_double64).value());
  17. }
  18. TEST(Uint32Conversions) {
  19. // Start by checking the byte-order.
  20. uint32_t ordered = 0x01234567;
  21. CHECK_EQ(2.9988165487136453e-38f, Single(ordered).value());
  22. uint32_t min_float32 = 0x00000001;
  23. CHECK_EQ(1.4e-45f, Single(min_float32).value());
  24. uint32_t max_float32 = 0x7f7fffff;
  25. CHECK_EQ(3.4028234e38f, Single(max_float32).value());
  26. }
  27. TEST(Double_AsDiyFp) {
  28. uint64_t ordered = UINT64_2PART_C(0x01234567, 89ABCDEF);
  29. DiyFp diy_fp = Double(ordered).AsDiyFp();
  30. CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e());
  31. // The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64.
  32. CHECK(UINT64_2PART_C(0x00134567, 89ABCDEF) == diy_fp.f()); // NOLINT
  33. uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
  34. diy_fp = Double(min_double64).AsDiyFp();
  35. CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e());
  36. // This is a denormal; so no hidden bit.
  37. CHECK(1 == diy_fp.f()); // NOLINT
  38. uint64_t max_double64 = UINT64_2PART_C(0x7fefffff, ffffffff);
  39. diy_fp = Double(max_double64).AsDiyFp();
  40. CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e());
  41. CHECK(UINT64_2PART_C(0x001fffff, ffffffff) == diy_fp.f()); // NOLINT
  42. }
  43. TEST(Single_AsDiyFp) {
  44. uint32_t ordered = 0x01234567;
  45. DiyFp diy_fp = Single(ordered).AsDiyFp();
  46. CHECK_EQ(0x2 - 0x7F - 23, diy_fp.e());
  47. // The 23 mantissa bits, plus the implicit 1 in bit 24 as a uint32_t.
  48. CHECK_EQ(0xA34567, diy_fp.f());
  49. uint32_t min_float32 = 0x00000001;
  50. diy_fp = Single(min_float32).AsDiyFp();
  51. CHECK_EQ(-0x7F - 23 + 1, diy_fp.e());
  52. // This is a denormal; so no hidden bit.
  53. CHECK_EQ(1, diy_fp.f());
  54. uint32_t max_float32 = 0x7f7fffff;
  55. diy_fp = Single(max_float32).AsDiyFp();
  56. CHECK_EQ(0xFE - 0x7F - 23, diy_fp.e());
  57. CHECK_EQ(0x00ffffff, diy_fp.f());
  58. }
  59. TEST(AsNormalizedDiyFp) {
  60. uint64_t ordered = UINT64_2PART_C(0x01234567, 89ABCDEF);
  61. DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp();
  62. CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e());
  63. CHECK((UINT64_2PART_C(0x00134567, 89ABCDEF) << 11) ==
  64. diy_fp.f()); // NOLINT
  65. uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
  66. diy_fp = Double(min_double64).AsNormalizedDiyFp();
  67. CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e());
  68. // This is a denormal; so no hidden bit.
  69. CHECK(UINT64_2PART_C(0x80000000, 00000000) == diy_fp.f()); // NOLINT
  70. uint64_t max_double64 = UINT64_2PART_C(0x7fefffff, ffffffff);
  71. diy_fp = Double(max_double64).AsNormalizedDiyFp();
  72. CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e());
  73. CHECK((UINT64_2PART_C(0x001fffff, ffffffff) << 11) ==
  74. diy_fp.f()); // NOLINT
  75. }
  76. TEST(Double_IsDenormal) {
  77. uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
  78. CHECK(Double(min_double64).IsDenormal());
  79. uint64_t bits = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
  80. CHECK(Double(bits).IsDenormal());
  81. bits = UINT64_2PART_C(0x00100000, 00000000);
  82. CHECK(!Double(bits).IsDenormal());
  83. }
  84. TEST(Single_IsDenormal) {
  85. uint32_t min_float32 = 0x00000001;
  86. CHECK(Single(min_float32).IsDenormal());
  87. uint32_t bits = 0x007FFFFF;
  88. CHECK(Single(bits).IsDenormal());
  89. bits = 0x00800000;
  90. CHECK(!Single(bits).IsDenormal());
  91. }
  92. TEST(Double_IsSpecial) {
  93. CHECK(Double(Double::Infinity()).IsSpecial());
  94. CHECK(Double(-Double::Infinity()).IsSpecial());
  95. CHECK(Double(Double::NaN()).IsSpecial());
  96. uint64_t bits = UINT64_2PART_C(0xFFF12345, 00000000);
  97. CHECK(Double(bits).IsSpecial());
  98. // Denormals are not special:
  99. CHECK(!Double(5e-324).IsSpecial());
  100. CHECK(!Double(-5e-324).IsSpecial());
  101. // And some random numbers:
  102. CHECK(!Double(0.0).IsSpecial());
  103. CHECK(!Double(-0.0).IsSpecial());
  104. CHECK(!Double(1.0).IsSpecial());
  105. CHECK(!Double(-1.0).IsSpecial());
  106. CHECK(!Double(1000000.0).IsSpecial());
  107. CHECK(!Double(-1000000.0).IsSpecial());
  108. CHECK(!Double(1e23).IsSpecial());
  109. CHECK(!Double(-1e23).IsSpecial());
  110. CHECK(!Double(1.7976931348623157e308).IsSpecial());
  111. CHECK(!Double(-1.7976931348623157e308).IsSpecial());
  112. }
  113. TEST(Single_IsSpecial) {
  114. CHECK(Single(Single::Infinity()).IsSpecial());
  115. CHECK(Single(-Single::Infinity()).IsSpecial());
  116. CHECK(Single(Single::NaN()).IsSpecial());
  117. uint32_t bits = 0xFFF12345;
  118. CHECK(Single(bits).IsSpecial());
  119. // Denormals are not special:
  120. CHECK(!Single(1.4e-45f).IsSpecial());
  121. CHECK(!Single(-1.4e-45f).IsSpecial());
  122. // And some random numbers:
  123. CHECK(!Single(0.0f).IsSpecial());
  124. CHECK(!Single(-0.0f).IsSpecial());
  125. CHECK(!Single(1.0f).IsSpecial());
  126. CHECK(!Single(-1.0f).IsSpecial());
  127. CHECK(!Single(1000000.0f).IsSpecial());
  128. CHECK(!Single(-1000000.0f).IsSpecial());
  129. CHECK(!Single(1e23f).IsSpecial());
  130. CHECK(!Single(-1e23f).IsSpecial());
  131. CHECK(!Single(1.18e-38f).IsSpecial());
  132. CHECK(!Single(-1.18e-38f).IsSpecial());
  133. }
  134. TEST(Double_IsInfinite) {
  135. CHECK(Double(Double::Infinity()).IsInfinite());
  136. CHECK(Double(-Double::Infinity()).IsInfinite());
  137. CHECK(!Double(Double::NaN()).IsInfinite());
  138. CHECK(!Double(0.0).IsInfinite());
  139. CHECK(!Double(-0.0).IsInfinite());
  140. CHECK(!Double(1.0).IsInfinite());
  141. CHECK(!Double(-1.0).IsInfinite());
  142. uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
  143. CHECK(!Double(min_double64).IsInfinite());
  144. }
  145. TEST(Single_IsInfinite) {
  146. CHECK(Single(Single::Infinity()).IsInfinite());
  147. CHECK(Single(-Single::Infinity()).IsInfinite());
  148. CHECK(!Single(Single::NaN()).IsInfinite());
  149. CHECK(!Single(0.0f).IsInfinite());
  150. CHECK(!Single(-0.0f).IsInfinite());
  151. CHECK(!Single(1.0f).IsInfinite());
  152. CHECK(!Single(-1.0f).IsInfinite());
  153. uint32_t min_float32 = 0x00000001;
  154. CHECK(!Single(min_float32).IsInfinite());
  155. }
  156. TEST(Double_IsNan) {
  157. CHECK(Double(Double::NaN()).IsNan());
  158. uint64_t other_nan = UINT64_2PART_C(0xFFFFFFFF, 00000001);
  159. CHECK(Double(other_nan).IsNan());
  160. CHECK(!Double(Double::Infinity()).IsNan());
  161. CHECK(!Double(-Double::Infinity()).IsNan());
  162. CHECK(!Double(0.0).IsNan());
  163. CHECK(!Double(-0.0).IsNan());
  164. CHECK(!Double(1.0).IsNan());
  165. CHECK(!Double(-1.0).IsNan());
  166. uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
  167. CHECK(!Double(min_double64).IsNan());
  168. }
  169. TEST(Single_IsNan) {
  170. CHECK(Single(Single::NaN()).IsNan());
  171. uint32_t other_nan = 0xFFFFF001;
  172. CHECK(Single(other_nan).IsNan());
  173. CHECK(!Single(Single::Infinity()).IsNan());
  174. CHECK(!Single(-Single::Infinity()).IsNan());
  175. CHECK(!Single(0.0f).IsNan());
  176. CHECK(!Single(-0.0f).IsNan());
  177. CHECK(!Single(1.0f).IsNan());
  178. CHECK(!Single(-1.0f).IsNan());
  179. uint32_t min_float32 = 0x00000001;
  180. CHECK(!Single(min_float32).IsNan());
  181. }
  182. TEST(Double_Sign) {
  183. CHECK_EQ(1, Double(1.0).Sign());
  184. CHECK_EQ(1, Double(Double::Infinity()).Sign());
  185. CHECK_EQ(-1, Double(-Double::Infinity()).Sign());
  186. CHECK_EQ(1, Double(0.0).Sign());
  187. CHECK_EQ(-1, Double(-0.0).Sign());
  188. uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
  189. CHECK_EQ(1, Double(min_double64).Sign());
  190. }
  191. TEST(Single_Sign) {
  192. CHECK_EQ(1, Single(1.0f).Sign());
  193. CHECK_EQ(1, Single(Single::Infinity()).Sign());
  194. CHECK_EQ(-1, Single(-Single::Infinity()).Sign());
  195. CHECK_EQ(1, Single(0.0f).Sign());
  196. CHECK_EQ(-1, Single(-0.0f).Sign());
  197. uint32_t min_float32 = 0x00000001;
  198. CHECK_EQ(1, Single(min_float32).Sign());
  199. }
  200. TEST(Double_NormalizedBoundaries) {
  201. DiyFp boundary_plus;
  202. DiyFp boundary_minus;
  203. DiyFp diy_fp = Double(1.5).AsNormalizedDiyFp();
  204. Double(1.5).NormalizedBoundaries(&boundary_minus, &boundary_plus);
  205. CHECK_EQ(diy_fp.e(), boundary_minus.e());
  206. CHECK_EQ(diy_fp.e(), boundary_plus.e());
  207. // 1.5 does not have a significand of the form 2^p (for some p).
  208. // Therefore its boundaries are at the same distance.
  209. CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
  210. CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
  211. diy_fp = Double(1.0).AsNormalizedDiyFp();
  212. Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus);
  213. CHECK_EQ(diy_fp.e(), boundary_minus.e());
  214. CHECK_EQ(diy_fp.e(), boundary_plus.e());
  215. // 1.0 does have a significand of the form 2^p (for some p).
  216. // Therefore its lower boundary is twice as close as the upper boundary.
  217. CHECK(boundary_plus.f() - diy_fp.f() > diy_fp.f() - boundary_minus.f());
  218. CHECK((1 << 9) == diy_fp.f() - boundary_minus.f()); // NOLINT
  219. CHECK((1 << 10) == boundary_plus.f() - diy_fp.f()); // NOLINT
  220. uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
  221. diy_fp = Double(min_double64).AsNormalizedDiyFp();
  222. Double(min_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus);
  223. CHECK_EQ(diy_fp.e(), boundary_minus.e());
  224. CHECK_EQ(diy_fp.e(), boundary_plus.e());
  225. // min-value does not have a significand of the form 2^p (for some p).
  226. // Therefore its boundaries are at the same distance.
  227. CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
  228. // Denormals have their boundaries much closer.
  229. CHECK((static_cast<uint64_t>(1) << 62) ==
  230. diy_fp.f() - boundary_minus.f()); // NOLINT
  231. uint64_t smallest_normal64 = UINT64_2PART_C(0x00100000, 00000000);
  232. diy_fp = Double(smallest_normal64).AsNormalizedDiyFp();
  233. Double(smallest_normal64).NormalizedBoundaries(&boundary_minus,
  234. &boundary_plus);
  235. CHECK_EQ(diy_fp.e(), boundary_minus.e());
  236. CHECK_EQ(diy_fp.e(), boundary_plus.e());
  237. // Even though the significand is of the form 2^p (for some p), its boundaries
  238. // are at the same distance. (This is the only exception).
  239. CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
  240. CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
  241. uint64_t largest_denormal64 = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
  242. diy_fp = Double(largest_denormal64).AsNormalizedDiyFp();
  243. Double(largest_denormal64).NormalizedBoundaries(&boundary_minus,
  244. &boundary_plus);
  245. CHECK_EQ(diy_fp.e(), boundary_minus.e());
  246. CHECK_EQ(diy_fp.e(), boundary_plus.e());
  247. CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
  248. CHECK((1 << 11) == diy_fp.f() - boundary_minus.f()); // NOLINT
  249. uint64_t max_double64 = UINT64_2PART_C(0x7fefffff, ffffffff);
  250. diy_fp = Double(max_double64).AsNormalizedDiyFp();
  251. Double(max_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus);
  252. CHECK_EQ(diy_fp.e(), boundary_minus.e());
  253. CHECK_EQ(diy_fp.e(), boundary_plus.e());
  254. // max-value does not have a significand of the form 2^p (for some p).
  255. // Therefore its boundaries are at the same distance.
  256. CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
  257. CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
  258. }
  259. TEST(Single_NormalizedBoundaries) {
  260. uint64_t kOne64 = 1;
  261. DiyFp boundary_plus;
  262. DiyFp boundary_minus;
  263. DiyFp diy_fp = Single(1.5f).AsDiyFp();
  264. diy_fp.Normalize();
  265. Single(1.5f).NormalizedBoundaries(&boundary_minus, &boundary_plus);
  266. CHECK_EQ(diy_fp.e(), boundary_minus.e());
  267. CHECK_EQ(diy_fp.e(), boundary_plus.e());
  268. // 1.5 does not have a significand of the form 2^p (for some p).
  269. // Therefore its boundaries are at the same distance.
  270. CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
  271. // Normalization shifts the significand by 8 bits. Add 32 bits for the bigger
  272. // data-type, and remove 1 because boundaries are at half a ULP.
  273. CHECK((kOne64 << 39) == diy_fp.f() - boundary_minus.f());
  274. diy_fp = Single(1.0f).AsDiyFp();
  275. diy_fp.Normalize();
  276. Single(1.0f).NormalizedBoundaries(&boundary_minus, &boundary_plus);
  277. CHECK_EQ(diy_fp.e(), boundary_minus.e());
  278. CHECK_EQ(diy_fp.e(), boundary_plus.e());
  279. // 1.0 does have a significand of the form 2^p (for some p).
  280. // Therefore its lower boundary is twice as close as the upper boundary.
  281. CHECK(boundary_plus.f() - diy_fp.f() > diy_fp.f() - boundary_minus.f());
  282. CHECK((kOne64 << 38) == diy_fp.f() - boundary_minus.f()); // NOLINT
  283. CHECK((kOne64 << 39) == boundary_plus.f() - diy_fp.f()); // NOLINT
  284. uint32_t min_float32 = 0x00000001;
  285. diy_fp = Single(min_float32).AsDiyFp();
  286. diy_fp.Normalize();
  287. Single(min_float32).NormalizedBoundaries(&boundary_minus, &boundary_plus);
  288. CHECK_EQ(diy_fp.e(), boundary_minus.e());
  289. CHECK_EQ(diy_fp.e(), boundary_plus.e());
  290. // min-value does not have a significand of the form 2^p (for some p).
  291. // Therefore its boundaries are at the same distance.
  292. CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
  293. // Denormals have their boundaries much closer.
  294. CHECK((kOne64 << 62) == diy_fp.f() - boundary_minus.f()); // NOLINT
  295. uint32_t smallest_normal32 = 0x00800000;
  296. diy_fp = Single(smallest_normal32).AsDiyFp();
  297. diy_fp.Normalize();
  298. Single(smallest_normal32).NormalizedBoundaries(&boundary_minus,
  299. &boundary_plus);
  300. CHECK_EQ(diy_fp.e(), boundary_minus.e());
  301. CHECK_EQ(diy_fp.e(), boundary_plus.e());
  302. // Even though the significand is of the form 2^p (for some p), its boundaries
  303. // are at the same distance. (This is the only exception).
  304. CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
  305. CHECK((kOne64 << 39) == diy_fp.f() - boundary_minus.f()); // NOLINT
  306. uint32_t largest_denormal32 = 0x007FFFFF;
  307. diy_fp = Single(largest_denormal32).AsDiyFp();
  308. diy_fp.Normalize();
  309. Single(largest_denormal32).NormalizedBoundaries(&boundary_minus,
  310. &boundary_plus);
  311. CHECK_EQ(diy_fp.e(), boundary_minus.e());
  312. CHECK_EQ(diy_fp.e(), boundary_plus.e());
  313. CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
  314. CHECK((kOne64 << 40) == diy_fp.f() - boundary_minus.f()); // NOLINT
  315. uint32_t max_float32 = 0x7f7fffff;
  316. diy_fp = Single(max_float32).AsDiyFp();
  317. diy_fp.Normalize();
  318. Single(max_float32).NormalizedBoundaries(&boundary_minus, &boundary_plus);
  319. CHECK_EQ(diy_fp.e(), boundary_minus.e());
  320. CHECK_EQ(diy_fp.e(), boundary_plus.e());
  321. // max-value does not have a significand of the form 2^p (for some p).
  322. // Therefore its boundaries are at the same distance.
  323. CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
  324. CHECK((kOne64 << 39) == diy_fp.f() - boundary_minus.f()); // NOLINT
  325. }
  326. TEST(NextDouble) {
  327. CHECK_EQ(4e-324, Double(0.0).NextDouble());
  328. CHECK_EQ(0.0, Double(-0.0).NextDouble());
  329. CHECK_EQ(-0.0, Double(-4e-324).NextDouble());
  330. CHECK(Double(Double(-0.0).NextDouble()).Sign() > 0);
  331. CHECK(Double(Double(-4e-324).NextDouble()).Sign() < 0);
  332. Double d0(-4e-324);
  333. Double d1(d0.NextDouble());
  334. Double d2(d1.NextDouble());
  335. CHECK_EQ(-0.0, d1.value());
  336. CHECK(d1.Sign() < 0);
  337. CHECK_EQ(0.0, d2.value());
  338. CHECK(d2.Sign() > 0);
  339. CHECK_EQ(4e-324, d2.NextDouble());
  340. CHECK_EQ(-1.7976931348623157e308, Double(-Double::Infinity()).NextDouble());
  341. CHECK_EQ(Double::Infinity(),
  342. Double(UINT64_2PART_C(0x7fefffff, ffffffff)).NextDouble());
  343. }
  344. TEST(PreviousDouble) {
  345. CHECK_EQ(0.0, Double(4e-324).PreviousDouble());
  346. CHECK_EQ(-0.0, Double(0.0).PreviousDouble());
  347. CHECK(Double(Double(0.0).PreviousDouble()).Sign() < 0);
  348. CHECK_EQ(-4e-324, Double(-0.0).PreviousDouble());
  349. Double d0(4e-324);
  350. Double d1(d0.PreviousDouble());
  351. Double d2(d1.PreviousDouble());
  352. CHECK_EQ(0.0, d1.value());
  353. CHECK(d1.Sign() > 0);
  354. CHECK_EQ(-0.0, d2.value());
  355. CHECK(d2.Sign() < 0);
  356. CHECK_EQ(-4e-324, d2.PreviousDouble());
  357. CHECK_EQ(1.7976931348623157e308, Double(Double::Infinity()).PreviousDouble());
  358. CHECK_EQ(-Double::Infinity(),
  359. Double(UINT64_2PART_C(0xffefffff, ffffffff)).PreviousDouble());
  360. }