/* * Copyright 2011-present Facebook, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // @author Mark Rabkin (mrabkin@fb.com) // @author Andrei Alexandrescu (andrei.alexandrescu@fb.com) #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if FOLLY_HAS_STRING_VIEW #include // @manual #endif #include #include #include #include #include // Ignore shadowing warnings within this file, so includers can use -Wshadow. FOLLY_PUSH_WARNING FOLLY_GNU_DISABLE_WARNING("-Wshadow") namespace folly { /** * Ubiquitous helper template for knowing what's a string. */ template struct IsSomeString : std::false_type {}; template <> struct IsSomeString : std::true_type {}; template class Range; /** * Finds the first occurrence of needle in haystack. The algorithm is on * average faster than O(haystack.size() * needle.size()) but not as fast * as Boyer-Moore. On the upside, it does not do any upfront * preprocessing and does not allocate memory. */ template < class Iter, class Comp = std::equal_to::value_type>> inline size_t qfind(const Range& haystack, const Range& needle, Comp eq = Comp()); /** * Finds the first occurrence of needle in haystack. The result is the * offset reported to the beginning of haystack, or string::npos if * needle wasn't found. */ template size_t qfind( const Range& haystack, const typename Range::value_type& needle); /** * Finds the last occurrence of needle in haystack. The result is the * offset reported to the beginning of haystack, or string::npos if * needle wasn't found. */ template size_t rfind( const Range& haystack, const typename Range::value_type& needle); /** * Finds the first occurrence of any element of needle in * haystack. The algorithm is O(haystack.size() * needle.size()). */ template inline size_t qfind_first_of( const Range& haystack, const Range& needle); /** * Small internal helper - returns the value just before an iterator. */ namespace detail { /** * For random-access iterators, the value before is simply i[-1]. */ template typename std::enable_if< std::is_same< typename std::iterator_traits::iterator_category, std::random_access_iterator_tag>::value, typename std::iterator_traits::reference>::type value_before(Iter i) { return i[-1]; } /** * For all other iterators, we need to use the decrement operator. */ template typename std::enable_if< !std::is_same< typename std::iterator_traits::iterator_category, std::random_access_iterator_tag>::value, typename std::iterator_traits::reference>::type value_before(Iter i) { return *--i; } /* * Use IsCharPointer::type to enable const char* or char*. * Use IsCharPointer::const_type to enable only const char*. */ template struct IsCharPointer {}; template <> struct IsCharPointer { typedef int type; }; template <> struct IsCharPointer { typedef int const_type; typedef int type; }; } // namespace detail /** * Range abstraction keeping a pair of iterators. We couldn't use * boost's similar range abstraction because we need an API identical * with the former StringPiece class, which is used by a lot of other * code. This abstraction does fulfill the needs of boost's * range-oriented algorithms though. * * (Keep memory lifetime in mind when using this class, since it * doesn't manage the data it refers to - just like an iterator * wouldn't.) */ template class Range { public: typedef std::size_t size_type; typedef Iter iterator; typedef Iter const_iterator; typedef typename std::remove_reference< typename std::iterator_traits::reference>::type value_type; using difference_type = typename std::iterator_traits::difference_type; typedef typename std::iterator_traits::reference reference; /** * For MutableStringPiece and MutableByteRange we define StringPiece * and ByteRange as const_range_type (for everything else its just * identity). We do that to enable operations such as find with * args which are const. */ typedef typename std::conditional< std::is_same::value || std::is_same::value, Range, Range>::type const_range_type; typedef std::char_traits::type> traits_type; static const size_type npos; // Works for all iterators constexpr Range() : b_(), e_() {} constexpr Range(const Range&) = default; constexpr Range(Range&&) = default; public: // Works for all iterators constexpr Range(Iter start, Iter end) : b_(start), e_(end) {} // Works only for random-access iterators constexpr Range(Iter start, size_t size) : b_(start), e_(start + size) {} #if !__clang__ || __CLANG_PREREQ(3, 7) // Clang 3.6 crashes on this line /* implicit */ Range(std::nullptr_t) = delete; #endif constexpr /* implicit */ Range(Iter str) : b_(str), e_(str + constexpr_strlen(str)) { static_assert( std::is_same::type>::value, "This constructor is only available for character ranges"); } template ::const_type = 0> /* implicit */ Range(const std::string& str) : b_(str.data()), e_(b_ + str.size()) {} template ::const_type = 0> Range(const std::string& str, std::string::size_type startFrom) { if (UNLIKELY(startFrom > str.size())) { throw_exception("index out of range"); } b_ = str.data() + startFrom; e_ = str.data() + str.size(); } template ::const_type = 0> Range( const std::string& str, std::string::size_type startFrom, std::string::size_type size) { if (UNLIKELY(startFrom > str.size())) { throw_exception("index out of range"); } b_ = str.data() + startFrom; if (str.size() - startFrom < size) { e_ = str.data() + str.size(); } else { e_ = b_ + size; } } Range(const Range& other, size_type first, size_type length = npos) : Range(other.subpiece(first, length)) {} template < class Container, class = typename std::enable_if< std::is_same::value>::type, class = decltype( Iter(std::declval().data()), Iter( std::declval().data() + std::declval().size()))> /* implicit */ constexpr Range(Container const& container) : b_(container.data()), e_(b_ + container.size()) {} template < class Container, class = typename std::enable_if< std::is_same::value>::type, class = decltype( Iter(std::declval().data()), Iter( std::declval().data() + std::declval().size()))> Range(Container const& container, typename Container::size_type startFrom) { auto const cdata = container.data(); auto const csize = container.size(); if (UNLIKELY(startFrom > csize)) { throw_exception("index out of range"); } b_ = cdata + startFrom; e_ = cdata + csize; } template < class Container, class = typename std::enable_if< std::is_same::value>::type, class = decltype( Iter(std::declval().data()), Iter( std::declval().data() + std::declval().size()))> Range( Container const& container, typename Container::size_type startFrom, typename Container::size_type size) { auto const cdata = container.data(); auto const csize = container.size(); if (UNLIKELY(startFrom > csize)) { throw_exception("index out of range"); } b_ = cdata + startFrom; if (csize - startFrom < size) { e_ = cdata + csize; } else { e_ = b_ + size; } } // Allow implicit conversion from Range (aka StringPiece) to // Range (aka ByteRange), as they're both frequently // used to represent ranges of bytes. Allow explicit conversion in the other // direction. template < class OtherIter, typename std::enable_if< (std::is_same::value && (std::is_same::value || std::is_same::value)), int>::type = 0> /* implicit */ Range(const Range& other) : b_(reinterpret_cast(other.begin())), e_(reinterpret_cast(other.end())) {} template < class OtherIter, typename std::enable_if< (std::is_same::value && std::is_same::value), int>::type = 0> /* implicit */ Range(const Range& other) : b_(reinterpret_cast(other.begin())), e_(reinterpret_cast(other.end())) {} template < class OtherIter, typename std::enable_if< (std::is_same::value && (std::is_same::value || std::is_same::value)), int>::type = 0> explicit Range(const Range& other) : b_(reinterpret_cast(other.begin())), e_(reinterpret_cast(other.end())) {} template < class OtherIter, typename std::enable_if< (std::is_same::value && std::is_same::value), int>::type = 0> explicit Range(const Range& other) : b_(reinterpret_cast(other.begin())), e_(reinterpret_cast(other.end())) {} // Allow implicit conversion from Range to Range if From is // implicitly convertible to To. template < class OtherIter, typename std::enable_if< (!std::is_same::value && std::is_convertible::value), int>::type = 0> constexpr /* implicit */ Range(const Range& other) : b_(other.begin()), e_(other.end()) {} // Allow explicit conversion from Range to Range if From is // explicitly convertible to To. template < class OtherIter, typename std::enable_if< (!std::is_same::value && !std::is_convertible::value && std::is_constructible::value), int>::type = 0> constexpr explicit Range(const Range& other) : b_(other.begin()), e_(other.end()) {} /** * Allow explicit construction of Range() from a std::array of a * convertible type. * * For instance, this allows constructing StringPiece from a * std::array or a std::array */ template < class T, size_t N, typename = typename std::enable_if< std::is_convertible::value>::type> constexpr explicit Range(const std::array& array) : b_{array.empty() ? nullptr : &array.at(0)}, e_{array.empty() ? nullptr : &array.at(0) + N} {} template < class T, size_t N, typename = typename std::enable_if::value>::type> constexpr explicit Range(std::array& array) : b_{array.empty() ? nullptr : &array.at(0)}, e_{array.empty() ? nullptr : &array.at(0) + N} {} Range& operator=(const Range& rhs) & = default; Range& operator=(Range&& rhs) & = default; template ::const_type = 0> Range& operator=(std::string&& rhs) = delete; void clear() { b_ = Iter(); e_ = Iter(); } void assign(Iter start, Iter end) { b_ = start; e_ = end; } void reset(Iter start, size_type size) { b_ = start; e_ = start + size; } // Works only for Range void reset(const std::string& str) { reset(str.data(), str.size()); } constexpr size_type size() const { // It would be nice to assert(b_ <= e_) here. This can be achieved even // in a C++11 compatible constexpr function: // http://ericniebler.com/2014/09/27/assert-and-constexpr-in-cxx11/ // Unfortunately current gcc versions have a bug causing it to reject // this check in a constexpr function: // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=71448 return size_type(e_ - b_); } constexpr size_type walk_size() const { return size_type(std::distance(b_, e_)); } constexpr bool empty() const { return b_ == e_; } constexpr Iter data() const { return b_; } constexpr Iter start() const { return b_; } constexpr Iter begin() const { return b_; } constexpr Iter end() const { return e_; } constexpr Iter cbegin() const { return b_; } constexpr Iter cend() const { return e_; } value_type& front() { assert(b_ < e_); return *b_; } value_type& back() { assert(b_ < e_); return detail::value_before(e_); } const value_type& front() const { assert(b_ < e_); return *b_; } const value_type& back() const { assert(b_ < e_); return detail::value_before(e_); } private: // It would be nice to be able to implicit convert to any target type // T for which either an (Iter, Iter) or (Iter, size_type) noexcept // constructor was available, and explicitly convert to any target // type for which those signatures were available but not noexcept. // The problem is that this creates ambiguity when there is also a // T constructor that takes a type U that is implicitly convertible // from Range. // // To avoid ambiguity, we need to avoid having explicit operator T // and implicit operator U coexist when T is constructible from U. // U cannot be deduced when searching for operator T (and C++ won't // perform an existential search for it), so we must limit the implicit // target types to a finite set that we can enumerate. // // At the moment the set of implicit target types consists of just // std::string_view (when it is available). #if FOLLY_HAS_STRING_VIEW using StringViewType = std::basic_string_view>; template using IsConstructibleViaStringView = StrictConjunction< std::is_constructible, std::is_constructible>; #else template using IsConstructibleViaStringView = std::false_type; #endif public: /// explicit operator conversion to any compatible type /// /// A compatible type is one which is constructible with an iterator and a /// size (preferred), or a pair of iterators (fallback), passed by const-ref. /// /// Participates in overload resolution precisely when the target type is /// compatible. This allows std::is_constructible compile-time checks to work. template < typename Tgt, std::enable_if_t< std::is_constructible::value && !IsConstructibleViaStringView::value, int> = 0> constexpr explicit operator Tgt() const noexcept( std::is_nothrow_constructible::value) { return Tgt(b_, walk_size()); } template < typename Tgt, std::enable_if_t< !std::is_constructible::value && std::is_constructible::value && !IsConstructibleViaStringView::value, int> = 0> constexpr explicit operator Tgt() const noexcept( std::is_nothrow_constructible::value) { return Tgt(b_, e_); } #if FOLLY_HAS_STRING_VIEW /// implicit operator conversion to std::string_view template < typename Tgt, std::enable_if_t< StrictConjunction< std::is_same, std::is_constructible>:: value, int> = 0> constexpr operator Tgt() const noexcept( std::is_nothrow_constructible::value) { return Tgt(b_, walk_size()); } #endif /// explicit non-operator conversion to any compatible type /// /// A compatible type is one which is constructible with an iterator and a /// size (preferred), or a pair of iterators (fallback), passed by const-ref. /// /// Participates in overload resolution precisely when the target type is /// compatible. This allows is_invocable compile-time checks to work. /// /// Provided in addition to the explicit operator conversion to permit passing /// additional arguments to the target type constructor. A canonical example /// of an additional argument might be an allocator, where the target type is /// some specialization of std::vector or std::basic_string in a context which /// requires a non-default-constructed allocator. template constexpr std::enable_if_t< std::is_constructible::value, Tgt> to(Args&&... args) const noexcept( std::is_nothrow_constructible:: value) { return Tgt(b_, walk_size(), static_cast(args)...); } template constexpr std::enable_if_t< !std::is_constructible::value && std::is_constructible::value, Tgt> to(Args&&... args) const noexcept( std::is_nothrow_constructible:: value) { return Tgt(b_, e_, static_cast(args)...); } // Works only for Range and Range std::string str() const { return to(); } std::string toString() const { return to(); } const_range_type castToConst() const { return const_range_type(*this); } // Works only for Range and Range int compare(const const_range_type& o) const { const size_type tsize = this->size(); const size_type osize = o.size(); const size_type msize = std::min(tsize, osize); int r = traits_type::compare(data(), o.data(), msize); if (r == 0 && tsize != osize) { // We check the signed bit of the subtraction and bit shift it // to produce either 0 or 2. The subtraction yields the // comparison values of either -1 or 1. r = (static_cast((osize - tsize) >> (CHAR_BIT * sizeof(size_t) - 1)) << 1) - 1; } return r; } value_type& operator[](size_t i) { assert(i < size()); return b_[i]; } const value_type& operator[](size_t i) const { assert(i < size()); return b_[i]; } value_type& at(size_t i) { if (i >= size()) { throw_exception("index out of range"); } return b_[i]; } const value_type& at(size_t i) const { if (i >= size()) { throw_exception("index out of range"); } return b_[i]; } // Do NOT use this function, which was left behind for backwards // compatibility. Use SpookyHashV2 instead -- it is faster, and produces // a 64-bit hash, which means dramatically fewer collisions in large maps. // (The above advice does not apply if you are targeting a 32-bit system.) // // Works only for Range and Range // // // ** WANT TO GET RID OF THIS LINT? ** // // A) Use a better hash function (*cough*folly::Hash*cough*), but // only if you don't serialize data in a format that depends on // this formula (ie the writer and reader assume this exact hash // function is used). // // B) If you have to use this exact function then make your own hasher // object and copy the body over (see thrift example: D3972362). // https://github.com/facebook/fbthrift/commit/f8ed502e24ab4a32a9d5f266580 [[deprecated( "Replace with folly::Hash if the hash is not serialized")]] uint32_t hash() const { // Taken from fbi/nstring.h: // Quick and dirty bernstein hash...fine for short ascii strings uint32_t hash = 5381; for (size_t ix = 0; ix < size(); ix++) { hash = ((hash << 5) + hash) + b_[ix]; } return hash; } void advance(size_type n) { if (UNLIKELY(n > size())) { throw_exception("index out of range"); } b_ += n; } void subtract(size_type n) { if (UNLIKELY(n > size())) { throw_exception("index out of range"); } e_ -= n; } Range subpiece(size_type first, size_type length = npos) const { if (UNLIKELY(first > size())) { throw_exception("index out of range"); } return Range(b_ + first, std::min(length, size() - first)); } // unchecked versions void uncheckedAdvance(size_type n) { assert(n <= size()); b_ += n; } void uncheckedSubtract(size_type n) { assert(n <= size()); e_ -= n; } Range uncheckedSubpiece(size_type first, size_type length = npos) const { assert(first <= size()); return Range(b_ + first, std::min(length, size() - first)); } void pop_front() { assert(b_ < e_); ++b_; } void pop_back() { assert(b_ < e_); --e_; } // string work-alike functions size_type find(const_range_type str) const { return qfind(castToConst(), str); } size_type find(const_range_type str, size_t pos) const { if (pos > size()) { return std::string::npos; } size_t ret = qfind(castToConst().subpiece(pos), str); return ret == npos ? ret : ret + pos; } size_type find(Iter s, size_t pos, size_t n) const { if (pos > size()) { return std::string::npos; } auto forFinding = castToConst(); size_t ret = qfind( pos ? forFinding.subpiece(pos) : forFinding, const_range_type(s, n)); return ret == npos ? ret : ret + pos; } // Works only for Range<(const) (unsigned) char*> which have Range(Iter) ctor size_type find(const Iter s) const { return qfind(castToConst(), const_range_type(s)); } // Works only for Range<(const) (unsigned) char*> which have Range(Iter) ctor size_type find(const Iter s, size_t pos) const { if (pos > size()) { return std::string::npos; } size_type ret = qfind(castToConst().subpiece(pos), const_range_type(s)); return ret == npos ? ret : ret + pos; } size_type find(value_type c) const { return qfind(castToConst(), c); } size_type rfind(value_type c) const { return folly::rfind(castToConst(), c); } size_type find(value_type c, size_t pos) const { if (pos > size()) { return std::string::npos; } size_type ret = qfind(castToConst().subpiece(pos), c); return ret == npos ? ret : ret + pos; } size_type find_first_of(const_range_type needles) const { return qfind_first_of(castToConst(), needles); } size_type find_first_of(const_range_type needles, size_t pos) const { if (pos > size()) { return std::string::npos; } size_type ret = qfind_first_of(castToConst().subpiece(pos), needles); return ret == npos ? ret : ret + pos; } // Works only for Range<(const) (unsigned) char*> which have Range(Iter) ctor size_type find_first_of(Iter needles) const { return find_first_of(const_range_type(needles)); } // Works only for Range<(const) (unsigned) char*> which have Range(Iter) ctor size_type find_first_of(Iter needles, size_t pos) const { return find_first_of(const_range_type(needles), pos); } size_type find_first_of(Iter needles, size_t pos, size_t n) const { return find_first_of(const_range_type(needles, n), pos); } size_type find_first_of(value_type c) const { return find(c); } size_type find_first_of(value_type c, size_t pos) const { return find(c, pos); } /** * Determine whether the range contains the given subrange or item. * * Note: Call find() directly if the index is needed. */ bool contains(const const_range_type& other) const { return find(other) != std::string::npos; } bool contains(const value_type& other) const { return find(other) != std::string::npos; } void swap(Range& rhs) { std::swap(b_, rhs.b_); std::swap(e_, rhs.e_); } /** * Does this Range start with another range? */ bool startsWith(const const_range_type& other) const { return size() >= other.size() && castToConst().subpiece(0, other.size()) == other; } bool startsWith(value_type c) const { return !empty() && front() == c; } template bool startsWith(const const_range_type& other, Comp&& eq) const { if (size() < other.size()) { return false; } auto const trunc = subpiece(0, other.size()); return std::equal( trunc.begin(), trunc.end(), other.begin(), std::forward(eq)); } /** * Does this Range end with another range? */ bool endsWith(const const_range_type& other) const { return size() >= other.size() && castToConst().subpiece(size() - other.size()) == other; } bool endsWith(value_type c) const { return !empty() && back() == c; } template bool endsWith(const const_range_type& other, Comp&& eq) const { if (size() < other.size()) { return false; } auto const trunc = subpiece(size() - other.size()); return std::equal( trunc.begin(), trunc.end(), other.begin(), std::forward(eq)); } template bool equals(const const_range_type& other, Comp&& eq) const { return size() == other.size() && std::equal(begin(), end(), other.begin(), std::forward(eq)); } /** * Remove the items in [b, e), as long as this subrange is at the beginning * or end of the Range. * * Required for boost::algorithm::trim() */ void erase(Iter b, Iter e) { if (b == b_) { b_ = e; } else if (e == e_) { e_ = b; } else { throw_exception("index out of range"); } } /** * Remove the given prefix and return true if the range starts with the given * prefix; return false otherwise. */ bool removePrefix(const const_range_type& prefix) { return startsWith(prefix) && (b_ += prefix.size(), true); } bool removePrefix(value_type prefix) { return startsWith(prefix) && (++b_, true); } /** * Remove the given suffix and return true if the range ends with the given * suffix; return false otherwise. */ bool removeSuffix(const const_range_type& suffix) { return endsWith(suffix) && (e_ -= suffix.size(), true); } bool removeSuffix(value_type suffix) { return endsWith(suffix) && (--e_, true); } /** * Replaces the content of the range, starting at position 'pos', with * contents of 'replacement'. Entire 'replacement' must fit into the * range. Returns false if 'replacements' does not fit. Example use: * * char in[] = "buffer"; * auto msp = MutablesStringPiece(input); * EXPECT_TRUE(msp.replaceAt(2, "tt")); * EXPECT_EQ(msp, "butter"); * * // not enough space * EXPECT_FALSE(msp.replace(msp.size() - 1, "rr")); * EXPECT_EQ(msp, "butter"); // unchanged */ bool replaceAt(size_t pos, const_range_type replacement) { if (size() < pos + replacement.size()) { return false; } std::copy(replacement.begin(), replacement.end(), begin() + pos); return true; } /** * Replaces all occurences of 'source' with 'dest'. Returns number * of replacements made. Source and dest have to have the same * length. Throws if the lengths are different. If 'source' is a * pattern that is overlapping with itself, we perform sequential * replacement: "aaaaaaa".replaceAll("aa", "ba") --> "bababaa" * * Example use: * * char in[] = "buffer"; * auto msp = MutablesStringPiece(input); * EXPECT_EQ(msp.replaceAll("ff","tt"), 1); * EXPECT_EQ(msp, "butter"); */ size_t replaceAll(const_range_type source, const_range_type dest) { if (source.size() != dest.size()) { throw_exception( "replacement must have the same size as source"); } if (dest.empty()) { return 0; } size_t pos = 0; size_t num_replaced = 0; size_type found = std::string::npos; while ((found = find(source, pos)) != std::string::npos) { replaceAt(found, dest); pos += source.size(); ++num_replaced; } return num_replaced; } /** * Splits this `Range` `[b, e)` in the position `i` dictated by the next * occurence of `delimiter`. * * Returns a new `Range` `[b, i)` and adjusts this range to start right after * the delimiter's position. This range will be empty if the delimiter is not * found. If called on an empty `Range`, both this and the returned `Range` * will be empty. * * Example: * * folly::StringPiece s("sample string for split_next"); * auto p = s.split_step(' '); * * // prints "string for split_next" * cout << s << endl; * * // prints "sample" * cout << p << endl; * * Example 2: * * void tokenize(StringPiece s, char delimiter) { * while (!s.empty()) { * cout << s.split_step(delimiter); * } * } * * @author: Marcelo Juchem */ Range split_step(value_type delimiter) { auto i = std::find(b_, e_, delimiter); Range result(b_, i); b_ = i == e_ ? e_ : std::next(i); return result; } Range split_step(Range delimiter) { auto i = find(delimiter); Range result(b_, i == std::string::npos ? size() : i); b_ = result.end() == e_ ? e_ : std::next( result.end(), typename std::iterator_traits::difference_type( delimiter.size())); return result; } /** * Convenience method that calls `split_step()` and passes the result to a * functor, returning whatever the functor does. Any additional arguments * `args` passed to this function are perfectly forwarded to the functor. * * Say you have a functor with this signature: * * Foo fn(Range r) { } * * `split_step()`'s return type will be `Foo`. It works just like: * * auto result = fn(myRange.split_step(' ')); * * A functor returning `void` is also supported. * * Example: * * void do_some_parsing(folly::StringPiece s) { * auto version = s.split_step(' ', [&](folly::StringPiece x) { * if (x.empty()) { * throw std::invalid_argument("empty string"); * } * return std::strtoull(x.begin(), x.end(), 16); * }); * * // ... * } * * struct Foo { * void parse(folly::StringPiece s) { * s.split_step(' ', parse_field, bar, 10); * s.split_step('\t', parse_field, baz, 20); * * auto const kludge = [](folly::StringPiece x, int &out, int def) { * if (x == "null") { * out = 0; * } else { * parse_field(x, out, def); * } * }; * * s.split_step('\t', kludge, gaz); * s.split_step(' ', kludge, foo); * } * * private: * int bar; * int baz; * int gaz; * int foo; * * static parse_field(folly::StringPiece s, int &out, int def) { * try { * out = folly::to(s); * } catch (std::exception const &) { * value = def; * } * } * }; * * @author: Marcelo Juchem */ template auto split_step(value_type delimiter, TProcess&& process, Args&&... args) -> decltype(process(std::declval(), std::forward(args)...)) { return process(split_step(delimiter), std::forward(args)...); } template auto split_step(Range delimiter, TProcess&& process, Args&&... args) -> decltype(process(std::declval(), std::forward(args)...)) { return process(split_step(delimiter), std::forward(args)...); } private: Iter b_, e_; }; template const typename Range::size_type Range::npos = std::string::npos; template void swap(Range& lhs, Range& rhs) { lhs.swap(rhs); } /** * Create a range from two iterators, with type deduction. */ template constexpr Range range(Iter first, Iter last) { return Range(first, last); } /* * Creates a range to reference the contents of a contiguous-storage container. */ // Use pointers for types with '.data()' member template constexpr auto range(Collection& v) -> Range { return Range(v.data(), v.data() + v.size()); } template constexpr auto range(Collection const& v) -> Range { return Range(v.data(), v.data() + v.size()); } template constexpr auto crange(Collection const& v) -> Range { return Range(v.data(), v.data() + v.size()); } template constexpr Range range(T (&array)[n]) { return Range(array, array + n); } template constexpr Range range(T const (&array)[n]) { return Range(array, array + n); } template constexpr Range crange(T const (&array)[n]) { return Range(array, array + n); } template constexpr Range range(std::array& array) { return Range{array}; } template constexpr Range range(std::array const& array) { return Range{array}; } template constexpr Range crange(std::array const& array) { return Range{array}; } typedef Range StringPiece; typedef Range MutableStringPiece; typedef Range ByteRange; typedef Range MutableByteRange; template std::basic_ostream& operator<<( std::basic_ostream& os, Range piece) { using StreamSize = decltype(os.width()); os.write(piece.start(), static_cast(piece.size())); return os; } template std::basic_ostream& operator<<(std::basic_ostream& os, Range piece) { using StreamSize = decltype(os.width()); os.write(piece.start(), static_cast(piece.size())); return os; } /** * Templated comparison operators */ template inline bool operator==(const Range& lhs, const Range& rhs) { return lhs.size() == rhs.size() && lhs.compare(rhs) == 0; } template inline bool operator!=(const Range& lhs, const Range& rhs) { return !(operator==(lhs, rhs)); } template inline bool operator<(const Range& lhs, const Range& rhs) { return lhs.compare(rhs) < 0; } template inline bool operator<=(const Range& lhs, const Range& rhs) { return lhs.compare(rhs) <= 0; } template inline bool operator>(const Range& lhs, const Range& rhs) { return lhs.compare(rhs) > 0; } template inline bool operator>=(const Range& lhs, const Range& rhs) { return lhs.compare(rhs) >= 0; } /** * Specializations of comparison operators for StringPiece */ namespace detail { template struct ComparableAsStringPiece { enum { value = (std::is_convertible::value && std::is_same::value) || (std::is_convertible::value && std::is_same::value) }; }; } // namespace detail /** * operator== through conversion for Range */ template _t::value, bool>> operator==(const T& lhs, const U& rhs) { return StringPiece(lhs) == StringPiece(rhs); } /** * operator!= through conversion for Range */ template _t::value, bool>> operator!=(const T& lhs, const U& rhs) { return StringPiece(lhs) != StringPiece(rhs); } /** * operator< through conversion for Range */ template _t::value, bool>> operator<(const T& lhs, const U& rhs) { return StringPiece(lhs) < StringPiece(rhs); } /** * operator> through conversion for Range */ template _t::value, bool>> operator>(const T& lhs, const U& rhs) { return StringPiece(lhs) > StringPiece(rhs); } /** * operator< through conversion for Range */ template _t::value, bool>> operator<=(const T& lhs, const U& rhs) { return StringPiece(lhs) <= StringPiece(rhs); } /** * operator> through conversion for Range */ template _t::value, bool>> operator>=(const T& lhs, const U& rhs) { return StringPiece(lhs) >= StringPiece(rhs); } /** * Finds substrings faster than brute force by borrowing from Boyer-Moore */ template size_t qfind(const Range& haystack, const Range& needle, Comp eq) { // Don't use std::search, use a Boyer-Moore-like trick by comparing // the last characters first auto const nsize = needle.size(); if (haystack.size() < nsize) { return std::string::npos; } if (!nsize) { return 0; } auto const nsize_1 = nsize - 1; auto const lastNeedle = needle[nsize_1]; // Boyer-Moore skip value for the last char in the needle. Zero is // not a valid value; skip will be computed the first time it's // needed. std::string::size_type skip = 0; auto i = haystack.begin(); auto iEnd = haystack.end() - nsize_1; while (i < iEnd) { // Boyer-Moore: match the last element in the needle while (!eq(i[nsize_1], lastNeedle)) { if (++i == iEnd) { // not found return std::string::npos; } } // Here we know that the last char matches // Continue in pedestrian mode for (size_t j = 0;;) { assert(j < nsize); if (!eq(i[j], needle[j])) { // Not found, we can skip // Compute the skip value lazily if (skip == 0) { skip = 1; while (skip <= nsize_1 && !eq(needle[nsize_1 - skip], lastNeedle)) { ++skip; } } i += skip; break; } // Check if done searching if (++j == nsize) { // Yay return size_t(i - haystack.begin()); } } } return std::string::npos; } namespace detail { inline size_t qfind_first_byte_of( const StringPiece haystack, const StringPiece needles) { static auto const qfind_first_byte_of_fn = folly::CpuId().sse42() ? qfind_first_byte_of_sse42 : qfind_first_byte_of_nosse; return qfind_first_byte_of_fn(haystack, needles); } } // namespace detail template size_t qfind_first_of( const Range& haystack, const Range& needles, Comp eq) { auto ret = std::find_first_of( haystack.begin(), haystack.end(), needles.begin(), needles.end(), eq); return ret == haystack.end() ? std::string::npos : ret - haystack.begin(); } struct AsciiCaseSensitive { bool operator()(char lhs, char rhs) const { return lhs == rhs; } }; /** * Check if two ascii characters are case insensitive equal. * The difference between the lower/upper case characters are the 6-th bit. * We also check they are alpha chars, in case of xor = 32. */ struct AsciiCaseInsensitive { bool operator()(char lhs, char rhs) const { char k = lhs ^ rhs; if (k == 0) { return true; } if (k != 32) { return false; } k = lhs | rhs; return (k >= 'a' && k <= 'z'); } }; template size_t qfind( const Range& haystack, const typename Range::value_type& needle) { auto pos = std::find(haystack.begin(), haystack.end(), needle); return pos == haystack.end() ? std::string::npos : pos - haystack.data(); } template size_t rfind( const Range& haystack, const typename Range::value_type& needle) { for (auto i = haystack.size(); i-- > 0;) { if (haystack[i] == needle) { return i; } } return std::string::npos; } // specialization for StringPiece template <> inline size_t qfind(const Range& haystack, const char& needle) { // memchr expects a not-null pointer, early return if the range is empty. if (haystack.empty()) { return std::string::npos; } auto pos = static_cast( ::memchr(haystack.data(), needle, haystack.size())); return pos == nullptr ? std::string::npos : pos - haystack.data(); } template <> inline size_t rfind(const Range& haystack, const char& needle) { // memchr expects a not-null pointer, early return if the range is empty. if (haystack.empty()) { return std::string::npos; } auto pos = static_cast( ::memrchr(haystack.data(), needle, haystack.size())); return pos == nullptr ? std::string::npos : pos - haystack.data(); } // specialization for ByteRange template <> inline size_t qfind( const Range& haystack, const unsigned char& needle) { // memchr expects a not-null pointer, early return if the range is empty. if (haystack.empty()) { return std::string::npos; } auto pos = static_cast( ::memchr(haystack.data(), needle, haystack.size())); return pos == nullptr ? std::string::npos : pos - haystack.data(); } template <> inline size_t rfind( const Range& haystack, const unsigned char& needle) { // memchr expects a not-null pointer, early return if the range is empty. if (haystack.empty()) { return std::string::npos; } auto pos = static_cast( ::memrchr(haystack.data(), needle, haystack.size())); return pos == nullptr ? std::string::npos : pos - haystack.data(); } template size_t qfind_first_of(const Range& haystack, const Range& needles) { return qfind_first_of(haystack, needles, AsciiCaseSensitive()); } // specialization for StringPiece template <> inline size_t qfind_first_of( const Range& haystack, const Range& needles) { return detail::qfind_first_byte_of(haystack, needles); } // specialization for ByteRange template <> inline size_t qfind_first_of( const Range& haystack, const Range& needles) { return detail::qfind_first_byte_of( StringPiece(haystack), StringPiece(needles)); } template struct hasher; template struct hasher< folly::Range, typename std::enable_if::value, void>::type> { using folly_is_avalanching = std::true_type; size_t operator()(folly::Range r) const { return hash::SpookyHashV2::Hash64(r.begin(), r.size() * sizeof(T), 0); } }; /** * _sp is a user-defined literal suffix to make an appropriate Range * specialization from a literal string. * * Modeled after C++17's `sv` suffix. */ inline namespace literals { inline namespace string_piece_literals { constexpr Range operator"" _sp( char const* str, size_t len) noexcept { return Range(str, len); } constexpr Range operator"" _sp( char16_t const* str, size_t len) noexcept { return Range(str, len); } constexpr Range operator"" _sp( char32_t const* str, size_t len) noexcept { return Range(str, len); } constexpr Range operator"" _sp( wchar_t const* str, size_t len) noexcept { return Range(str, len); } } // namespace string_piece_literals } // namespace literals } // namespace folly FOLLY_POP_WARNING FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(folly::Range)